Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 352: 141423, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340991

RESUMO

Chlorothalonil is a broad-spectrum organochlorine fungicide widely employed in agriculture to control fungal foliar diseases. This fungicide enters aquatic environments through the leaching process, leading to toxicity in non-target organisms. Organic contaminants can impact organism reproduction as they have the potential to interact with the neuroendocrine system. Although there are reports of toxic effects of chlorothalonil, information regarding its impact on reproduction is limited. The aim of the present study was to evaluate the influence of chlorothalonil on male reproductive physiology using the zebrafish (Danio rerio) as ecotoxicological model. Zebrafish were exposed for 7 days to two concentrations of chlorothalonil (0.1 and 10 µg/L) along with a control group (with DMSO - 0.001%). Gene expression of hypothalamus-pituitary-gonad axis components (gnrh2, gnrh3, lhr, fshr, star, hsd17b1, hsd17b3, and cyp19a1), as well as hepatic vitellogenin concentration were assessed. In sperm cells, reactive oxygen species (ROS) content, lipid peroxidation (LPO), mitochondrial functionality, and membrane integrity and fluidity were evaluated. Results indicate that exposure to the higher concentration of chlorothalonil led to a reduction in brain gnr2 expression. In gonads, mRNA levels of lhr, star, and hsd17b1 were decreased at both chlorothalonil concentrations tested. Similarly, hepatic vitellogenin concentration was reduced. Regarding sperm cells, a decreased ROS level was observed, without significant difference in LPO level. Additionally, a higher mitochondrial potential and lower membrane fluidity were observed in zebrafish exposed to chlorothalonil. These findings demonstrate that chlorothalonil acts as an endocrine disruptor, influencing reproductive control mechanisms, as evidenced by changes in expression of genes HPG axis, as well as hepatic vitellogenin concentration. Furthermore, our findings reveal that exposure to this contaminant may compromise the reproductive success of the species, as it affected sperm quality parameters.


Assuntos
Disruptores Endócrinos , Fungicidas Industriais , Nitrilas , Poluentes Químicos da Água , Animais , Masculino , Peixe-Zebra/metabolismo , Disruptores Endócrinos/metabolismo , Eixo Hipotalâmico-Hipofisário-Gonadal , Espécies Reativas de Oxigênio/metabolismo , Fungicidas Industriais/metabolismo , Vitelogeninas/metabolismo , Sêmen , Gônadas , Espermatozoides/metabolismo , Reprodução , Poluentes Químicos da Água/metabolismo
2.
Pestic Biochem Physiol ; 181: 105027, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35082043

RESUMO

The aim of this work was to test the insecticidal effect of the essential oil of Illicium verum (Hook) by observing the survival, biochemical parameters (acetylcholinesterase (AChE) activity, glutathione s-transferase (GST) activity and the concentration of reactive oxygen species (ROS)) and locomotor capacity of the Coleoptera Alphitobius diaperinus (Panzer), a pest of beef poultry. The sublethal concentrations (100% survival of A. diaperinus during 96 h of exposure) of I. verum essential oil selected for analysis were 0.5% and 1%. The selected sublethal concentrations did not show significant increases in ROS levels after 24 h of exposure to the essential oil. However, increases in GST activity were seen following exposure to 0.5% I. verum essential oil, while decreases in AChE activity were observed following exposure to concentrations of 0.5% and 1%. These results correlate with the observed behavior of A. diaperinus; when placed into an arena, these insects typically demonstrate aversion to stimuli and refuge-seeking behavior. Following exposure to 0.5% I. verum essential oil, the insects showed loss of refuge-seeking capacity and, following exposure to a concentration of 1%, loss of locomotor capacity. Overall, these results indicate that I. verum essential oil can be used as an alternative to conventional insecticides.


Assuntos
Besouros , Illicium , Inseticidas , Óleos Voláteis , Acetilcolinesterase , Animais , Bovinos , Colinesterases , Inseticidas/farmacologia , Locomoção , Óleos Voláteis/farmacologia
3.
Toxicon ; 203: 104-114, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34662628

RESUMO

We evaluated the accumulation of okadaic acid (OA), a diarrhetic toxin, and the antioxidant responses in the marine annelid Laeonereis acuta exposed to the benthic toxigenic dinoflagellate Prorocentrum cf. lima. Nontoxic Tetraselmis sp. was used as a control diet. Living cells of the two algae were supplied as food to animals kept in agar medium for 72 h. To assess the significance of the observed effects, our experimental design treated the algal species (diet), algal cell densities, and exposure time as fixed factors. Responses of the organisms were assessed through oxidative stress biomarkers (glutathione-S-transferase [GST], catalase [CAT], reduced glutathione [GSH] and lipid peroxidation [LPO]). Toxin accumulation was measured by LC-MS/MS in whole-body homogenates after 12, 24 and 72 h of exposure. Worms exposed to the toxigenic dinoflagellate gradually accumulated OA, with toxin levels directly related to the cell density of Prorocentrum cf. lima. Worms fed with Prorocentrum cf. lima exhibited decreased CAT activity, increased LPO levels - both interactively affected by algal species and time - and decreased GSH levels, which were interactively affected by algal species and cell density. Higher LPO levels, along with the inhibition of CAT and GSH, clearly indicated an oxidative stress situation in worms exposed to the toxigenic dinoflagellate. Laeonereis acuta accumulated moderate OA levels and may act as a vector of OA to food webs in estuarine areas under high Prorocentrum cf. lima abundance.


Assuntos
Anelídeos , Dinoflagelados , Animais , Antioxidantes , Cromatografia Líquida , Ácido Okadáico/toxicidade , Espectrometria de Massas em Tandem
4.
Mar Pollut Bull ; 157: 111321, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32658686

RESUMO

Dichlofluanid is a fungicide employed as a booster biocide in antifouling paints, but information its toxicity to aquatic organisms is scarce. This study aims to evaluate biomarker responses in the mussel Perna perna exposed to dichlofluanid. Mussels were exposed to 0 (control), 0.1 µg/L (environmental concentration), 10, and 100 µg/L of dichlofluanid for 24 and 96 h. Byssus formation, oxygen consumption, and oxidative stress response were evaluated in gills and digestive glands. The results demonstrated that even the lowest dichlofluanid concentration causes a reduction in byssus biomass and water content. The higher concentrations caused an acute increase in oxygen consumption, which only returned to control levels after 96 h of exposure. ACAP levels and antioxidant enzyme activities were affected in both tissues with a larger effect observed in gill tissues as demonstrated by the IBR index. The overall results demonstrated that environmentally relevant concentrations of dichlofluanid would be deleterious to aquatic organisms.


Assuntos
Desinfetantes , Perna (Organismo) , Poluentes Químicos da Água , Compostos de Anilina , Animais , Antioxidantes , Brânquias
5.
Aquat Toxicol ; 225: 105527, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32599436

RESUMO

A diverse range of chemicals are used in agriculture to increase food production on a large scale, and among them is the use of pesticides such as chlorothalonil, a broad-spectrum fungicide used in the control of foliar fungal diseases. This study aimed to elucidate the effects of chlorothalonil on biochemical biomarkers of oxidative stress in tissues of the fish Danio rerio. To achieve this, animals were exposed for 4 and 7 days, to nominal concentrations of chlorothalonil at 0 µg/L (DMSO, 0.001%), 0.1 µg/L and 10 µg/L, and after the exposure period, the tissues (gills and liver) were removed for biochemical analysis. Antioxidant capacity against peroxyl radicals (ACAP) and enzyme activities, such as superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST) and glutamate cysteine ligase (GCL), were evaluated in both tissues. In addition, the concentration of reactive oxygen species (ROS), reduced glutathione (GSH) and lipid peroxidation (LPO) levels were also analysed. A significant increase in ROS concentration, ACAP levels, GST and GCL activities and a significant reduction of LPO levels in gills exposed to the highest concentration were observed after 4 days. However, there was a significant reduction of ACAP and CAT activity, as well as a significant increase of GST activity and LPO levels in gills exposed to the lower concentration after 7 days. The liver was less affected, presenting a significant reduction in CAT activity and LPO levels after 4 days. However, a significant increase in SOD activity and LPO levels occurred after 7 days. These results indicate that chlorothalonil, after 4 days, caused activation of the antioxidant defence system in gills of animals exposed to the highest concentration. However, after 7 days, the lowest concentration of this compound caused oxidative stress in this same organ. Also, the results show that gills were more affected than the liver, probably because gills can be involved in chlorothalonil metabolisation. Therefore, it is possible that the liver could be exposed to lower chlorothalonil concentrations or less toxic metabolites due to the metabolism taking place in the gills.


Assuntos
Antioxidantes/metabolismo , Fungicidas Industriais/toxicidade , Nitrilas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Animais , Catalase/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/enzimologia , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Peróxidos/metabolismo , Superóxido Dismutase/metabolismo
6.
Aquat Toxicol ; 196: 1-8, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29310040

RESUMO

Chlorothalonil is an active biocide applied in antifouling paints, and also used as fungicide in agricultural activities with the purpose to protect plants from foliar and seed diseases. Thus, the aim of this study was to evaluate the effects of chlorothalonil exposure on biochemical biomarkers of oxidative metabolism as well as on cholinesterases in the estuarine polychaete Laeonereis acuta. Animals were exposed for 24 and 96 h to the following nominal concentrations of chlorothalonil: 0.1, 10.0 and 100.0 µg/L. The antioxidant capacity against peroxyl radicals (ACAP) and the activity of the enzymes catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), glutamate cysteine ligase (GCL), acetylcholinesterase (AChE) and propionylcholinesterase (PChE) were evaluated in whole-body tissue. In addition, the levels of reduced glutathione (GSH), lipid peroxidation (LPO), glycogen and lactate levels were also analyzed. A reduction in ACAP levels was observed in animals exposed to the higher chlorothalonil concentration, concomitantly with an induction of GST activity as well as diminution in GSH content in these animals. This disturbance in the redox state of animal tissues leads to an oxidative stress situation, resulting in an induction in LPO levels. It was also demonstrated that chlorothalonil exposure causes alteration in AChE activity, possibly related to damage to membrane lipids. These results demonstrated that chlorothalonil possesses harmful effects to estuarine animals and its use as antifouling biocide has to be carefully reconsidered in risk analysis studies.


Assuntos
Fungicidas Industriais/toxicidade , Nitrilas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Poliquetos/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/metabolismo , Catalase/metabolismo , Colinesterases/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Transferase/metabolismo , Glicogênio/análise , Ácido Láctico/análise , Peroxidação de Lipídeos/efeitos dos fármacos , Peróxidos/metabolismo , Poliquetos/metabolismo , Espectrofotometria , Superóxido Dismutase/metabolismo
7.
Environ Sci Pollut Res Int ; 25(3): 2924-2931, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29147981

RESUMO

Reproductive effects caused by the exposure to environmentally relevant dosages of atrazine on wild animals are poorly understood. This study evaluated the effects of three dosages of atrazine on sperm parameters of adult Calomys laucha males. Adult mice were orally exposed to dosages of 0 (water and vehicle control), 0.1, 1, and 10 mg/kg of animal weight for a 21-day period. Following exposure, analyses were performed to determine sperm motility parameters, plasma membrane integrity and fluidity, mitochondrial functionality, acrosome integrity, DNA damage, lipid peroxidation, and production of reactive oxygen species (ROS) in the sperm samples. Total and progressive motility were reduced in all dosages in comparison to control groups. Membrane integrity and mitochondrial functionality of sperm were reduced in all dosages, and the sperm membrane fluidity increased in the higher dosages of atrazine (1 and 10 mg/kg), in comparison with the vehicle control. A decrease in the acrosome integrity was noted at 10 mg/kg of atrazine, compared to the control groups. The integrity of DNA, ROS generation, and lipid peroxidation of sperm showed no significant differences when compared with the control groups. These results suggest that exposure to low dosages of atrazine can affect sperm parameters of Calomys laucha and therefore reduce the reproductive capacity of wild rodent species.


Assuntos
Atrazina/toxicidade , Disruptores Endócrinos/toxicidade , Monitoramento Ambiental/métodos , Reprodução/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Fluidez de Membrana/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Motilidade dos Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-28847529

RESUMO

Atrazine is an extensively used herbicide, and has become a common environmental contaminant. Effects on dopaminergic neurotransmission in mammals following exposure to atrazine have been previously demonstrated. Here, the effects of atrazine regarding behavioural and dopaminergic neurotransmission parameters were assessed in the fruit fly D. melanogaster, exposed during embryonic and larval development. Embryos (newly fertilized eggs) were exposed to two atrazine concentrations (10µM and 100µM) in the diet until the adult fly emerged. Negative geotaxis assay, as well as exploratory behaviour, immobility time and number of grooming episodes in an open field system were assessed. Tyrosine hydroxylase (TH) activity and gene expression of the dopaminergic system were also evaluated in newly emerged male and female flies. All analyzed parameters in male flies were not significantly affected by atrazine exposure. However female flies exposed to atrazine at 10µM presented an increase in immobility time and a reduction in exploratory activity in the open field test, which was offset by an increase in the number of grooming episodes. Also, female flies exposed to 100µM of atrazine presented an increase in immobility time. Gene expression of DOPA decarboxylase and dopamine (DA) receptors were also increased only in females. The behavioural effects of atrazine exposure observed in female flies were due to a disturbance in the dopaminergic system.


Assuntos
Atrazina/toxicidade , Comportamento Animal/efeitos dos fármacos , Drosophila melanogaster/efeitos dos fármacos , Herbicidas/toxicidade , Animais , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Tirosina 3-Mono-Oxigenase/metabolismo
10.
Zebrafish ; 14(2): 97-105, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27906609

RESUMO

It has been demonstrated that glyphosate-based herbicides are toxic to animals. In the present study, reactive oxygen species (ROS) generation, antioxidant capacity against peroxyl radicals (ACAP), and lipid peroxidation (LPO), as well as the activity and expression of the acetylcholinesterase (AChE) enzyme, were evaluated in Danio rerio males exposed to 5 or 10 mg/L of glyphosate for 24 and 96 h. An increase in ACAP in gills after 24 h was observed in the animals exposed to 5 mg/L of glyphosate. A decrease in LPO was observed in brain tissue of animals exposed to 10 mg/L after 24 h, while an increase was observed in muscle after 96 h. No significant alterations were observed in ROS generation. AChE activity was not altered in muscles or brains of animals exposed to either glyphosate concentration for 24 or 96 h. However, gene expression of this enzyme in the brain was reduced after 24 h and was enhanced in both brain and muscle tissues after 96 h. Thus, contrary to previous findings that had attributed the imbalance in the oxidative state of animals exposed to glyphosate-based herbicides to surfactants and other inert compounds, the present study demonstrated that glyphosate per se promotes this same effect in zebrafish males. Although glyphosate concentrations did not alter AChE activity, this study demonstrated for the first time that this molecule affects ache expression in male zebrafish D. rerio.


Assuntos
Acetilcolinesterase/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glicina/análogos & derivados , Estresse Oxidativo/efeitos dos fármacos , Peixe-Zebra , Acetilcolinesterase/genética , Animais , Encéfalo/efeitos dos fármacos , Relação Dose-Resposta a Droga , Brânquias/efeitos dos fármacos , Glicina/administração & dosagem , Glicina/toxicidade , Herbicidas/administração & dosagem , Herbicidas/toxicidade , Peroxidação de Lipídeos , Masculino , Músculo Esquelético/efeitos dos fármacos , Espécies Reativas de Oxigênio
11.
Ecotoxicol Environ Saf ; 135: 259-266, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27750093

RESUMO

Glyphosate based herbicides, including Roundup, are widely employed in agriculture and urban spaces. The objective of this study was to evaluate the toxicological effects of Roundup on the estuarine polychaeta Laeonereis acuta. Biomarkers of oxidative stress as well as acetylcholinesterase and propionilcholinesterase activities were analyzed. Firstly, the LC50 96h for L. acuta was established (8.19mg/L). After, the animals were exposed to two Roundup concentrations: 3.25mg/L (non-observed effect concentration - NOEC) and 5.35mg/L (LC10) for 24h and 96h. Oxygen consumption was determined and the animals were divided into three body regions (anterior, middle and posterior) for biochemical analysis. An inhibition of both cholinesterase isoforms were observed in animals exposed to both Roundup concentrations after 96h. A significant reactive oxygen species (ROS) reduction was observed in the posterior region of animals in both periods, while antioxidant capacity against peroxyl radicals (ACAP) was reduced in the posterior region of animals exposed for 24h. Considering the antioxidant defense system, both GSH levels and enzyme activities (catalase, superoxide dismutase, glutathione s-transferase, glutathione peroxidase and glutamate cysteine ligase) were not altered after exposure. Lipid peroxidation was reduced in all analyzed body regions in both Roundup concentrations after 24h. Animals exposed to the highest concentration presented a reduction in lipid peroxidation in the anterior region after 96h, while animals exposed to the lowest concentration presented a reduction in the middle region. Overall results indicate that Roundup exposure presents toxicity to L. acuta, causing a disruption in ROS and ACAP levels as well as affects the cholinergic system of this invertebrate species.


Assuntos
Inibidores da Colinesterase/farmacologia , Glicina/análogos & derivados , Herbicidas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Poliquetos/efeitos dos fármacos , Acetilcolinesterase/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Catalase/efeitos dos fármacos , Catalase/metabolismo , Colinesterases/efeitos dos fármacos , Glutationa Peroxidase/efeitos dos fármacos , Glutationa Transferase/efeitos dos fármacos , Glicina/toxicidade , Dose Letal Mediana , Peroxidação de Lipídeos/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Peróxidos/antagonistas & inibidores , Espécies Reativas de Oxigênio/análise , Superóxido Dismutase/efeitos dos fármacos , Fatores de Tempo
12.
Zebrafish ; 13(5): 432-41, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27315435

RESUMO

The objective of the present study was to determine the effects of Roundup on oxidative status in adult Danio rerio liver and gills. Reactive oxygen species (ROS) and antioxidant capacity (ACAP) were measured in fish after exposure to Roundup (5 and 10 mg/L) for 24, 48, 72, and 96 h. Furthermore, gene expression related to antioxidant response was evaluated after 24 and 96 h. In gills, an increase in ACAP was observed after 96 h in the highest concentration. In the liver, a reduction in ROS and ACAP was observed after 24 h, whereas an increase in ACAP was observed after 48 h in the highest concentration. Exposure to the lowest concentration caused a reduction in ROS after 72 and 96 h. Regarding gene expression, a reduction in superoxide dismutase 2 (sod2) and glutathione S-transferase (gstπ) was observed. An increase in uncoupling protein 1 (ucp1) expression was observed in gills of animals exposed to the highest concentration after 24 h. Glutathione peroxidase (gpx) gene expression was reduced in the gills of animals exposed to the lowest concentration; however, it was induced in liver tissue after 96 h of exposure to the highest concentration. These results indicate that zebrafish exposure to Roundup alters oxidative status and causes a response in terms of antioxidant defense system gene expression.


Assuntos
Expressão Gênica/efeitos dos fármacos , Glicina/análogos & derivados , Estresse Oxidativo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Animais , Feminino , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Glicina/toxicidade , Herbicidas/toxicidade , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Peixe-Zebra/genética
13.
Artigo em Inglês | MEDLINE | ID: mdl-26980113

RESUMO

Glyphosate is a non-selective and post-emergent herbicide that affects plant growth. Animal exposure to this herbicide can lead to adverse effects, such as endocrine disruption, oxidative stress and behavioural disorders. Drosophilids have been utilized previously as an effective tool in toxicological tests. In the present study, the effects of a glyphosate-based herbicide (Roundup [Original]) were investigated regarding oxidative stress, the antioxidant defence system and acetylcholinesterase (AChE) activity in Drosophila melanogaster. Flies (of both genders) that were 1 to 3days old were exposed to different glyphosate concentrations (0.0g/L=control, 1.0g/L, 2.0g/L, 5.0g/L and 10.0g/L) [corrected] in the diet for 24h and 96h. After the exposure periods, reactive oxygen species (ROS) levels, antioxidant capacity against peroxyl radicals (ACAP) and lipid peroxidation (LPO) levels were quantified. In addition, the mRNA expression of antioxidant genes (i.e., keap1, sod, sod2, cat, irc, gclc, gclm, gss, trxt, trxr-1 and trxr-2) was evaluated via RT-PCR. Additionally, AChE activity was evaluated only after the 96h exposure period. The results indicated that Roundup exposure leads to a reduction in ROS levels in flies exposed for 96h. ACAP levels and gene expression of the antioxidant defence system exhibited an increase from 24h, while LPO did not show any significant alterations in both exposure periods. AChE activity was not affected following Roundup exposure. Our data suggest that Roundup exposure causes an early activation of the antioxidant defence system in D. melanogaster, and this can prevent subsequent damage caused by ROS.


Assuntos
Antioxidantes/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Glicina/análogos & derivados , Herbicidas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Acetilcolinesterase/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Regulação da Expressão Gênica , Glicina/toxicidade , Masculino , Fatores de Tempo
14.
Fish Physiol Biochem ; 40(6): 1817-25, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25119852

RESUMO

Fish are commonly exposed to environmental pollutants, which in turns could induce an oxidative stress. So, it is important to understand the effects and the responses elicited by these toxicants in fish species, being fish cell lines important tools for this purpose. Thus, the aim of the present study was to compare the effects of copper and UV-B radiation exposure on zebrafish hepatocytes (ZFL lineage) in terms of reactive oxygen species (ROS) levels, sulfhydril groups content and mRNA levels of important genes related to cellular response to toxic agents. Exposure of ZFL cells to UV-B radiation (23.3 mJ/cm(2)) significantly increased levels of intracellular ROS and mRNA of both superoxide dismutase isoforms (sod1 and sod2), three glutathione S-transferase isoforms (gstα, gstµ and gstπ) and a heat shock protein (hsp70). However, no changes in nonprotein sulfhydryl groups (NP-SH) content, as well as in the mRNA levels of genes related to glutathione (GSH) synthesis and recycling, were observed. Contrary to this, copper exposure (20 mg/L) diminished NP-SH content and increased the levels of mRNA of genes related to GSH synthesis (gclc and gs). Moreover, copper exposure increases the mRNA levels of some genes related to antioxidant defenses (gpx and gstπ), biotransformation reactions (cyp1a1) and protein repair (hsp70). In conclusion, these results demonstrated that both toxicants could increase ROS levels in ZFL cell line, but the responses are different, which could be related to activation of different signaling pathways.


Assuntos
Cobre/toxicidade , Hepatócitos/efeitos dos fármacos , Hepatócitos/efeitos da radiação , Espécies Reativas de Oxigênio/metabolismo , Raios Ultravioleta/efeitos adversos , Animais , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos da radiação , Hepatócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Peixe-Zebra
15.
Aquat Toxicol ; 155: 322-6, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25089920

RESUMO

Glyphosate is a systemic, non-selective herbicide widely used in agriculture worldwide. It acts as an inhibitor of the enzyme 5-enolpyruvylshikimate-3-phosphate synthase by interrupting the synthesis of essential aromatic amino acids. This pathway is not present in animals, although some studies have shown that the herbicide glyphosate can affect fish reproduction. In this study, the effect of glyphosate on sperm quality of the fish Danio rerio was investigated after 24 and 96 h of exposure at concentrations of 5mg/L and 10mg/L. The spermatic cell concentration, sperm motility and motility period were measured employing conventional microscopy. The mitochondrial functionality, membrane integrity and DNA integrity were measured by fluorescence microscopy using specific probes. No significant differences in sperm concentration were observed; however, sperm motility and the motility period were reduced after exposure to both glyphosate concentrations during both exposure periods. The mitochondrial functionality and membrane and DNA integrity were also reduced at the highest concentration during both exposure periods. The results showed that glyphosate can induce harmful effects on reproductive parameters in D. rerio and that this change would reduce the fertility rate of these animals.


Assuntos
Glicina/análogos & derivados , Herbicidas/toxicidade , Espermatozoides/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Glicina/toxicidade , Herbicidas/metabolismo , Humanos , Masculino , Reprodução/efeitos dos fármacos , Contagem de Espermatozoides , Motilidade dos Espermatozoides/efeitos dos fármacos , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/metabolismo
16.
Aquat Toxicol ; 130-131: 171-3, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23411353

RESUMO

Although the herbicide glyphosate [N-(phosphonomethyl)glycine] is not classified as an acethylcholinesterase inhibitor, some studies have reported reduction in the acethylcolinesterase activity after in vivo exposure to both its pure form and its commercial formulations. Considering this controversy, the objective of the present study was to investigate, in vitro, the effects of glyphosate exposure on cholinesterase activity of the brown mussel Perna perna and of two fish species: zebrafish Danio rerio and onesided livebearer Jenynsia multidentata. For this purpose, samples of different tissues (brain and muscle for fish; gills and muscle for mussel) were homogenized and pre-incubated with different glyphosate concentrations before cholinesterase activity determination. Results demonstrated that cholinesterase from different fractions of all species tested was inhibited by glyphosate. The concentrations of glyphosate that inhibits 50% of cholinesterase activity (IC50) ranged from 0.62 mM for P. perna muscle to 8.43 mM for J. multidentata brain. According to this, cholinesterase from mussel seems to be more sensitive to glyphosate exposure than those from the fish D. rerio and J. multidentata.


Assuntos
Colinesterases/metabolismo , Ciprinodontiformes/metabolismo , Exposição Ambiental , Glicina/análogos & derivados , Herbicidas/metabolismo , Perna (Organismo)/metabolismo , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/metabolismo , Animais , Relação Dose-Resposta a Droga , Feminino , Glicina/metabolismo , Glicina/toxicidade , Herbicidas/toxicidade , Masculino , Distribuição Tecidual , Poluentes Químicos da Água/toxicidade
17.
Mar Pollut Bull ; 52(2): 199-206, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16380142

RESUMO

Biomarkers of exposure and effect of pollutants were analyzed in croakers Micropogonias furnieri (Teleostei: Sciaenidae) captured in winter and summer in a polluted and in a non-polluted site at the Patos Lagoon estuary (Southern Brazil). Catalase and glutathione S-transferase activities (exposure biomarkers) and lipid peroxidation (effect biomarker) were analyzed in liver samples. Other two effect biomarkers were also studied: blood cells DNA damage (through comet assay and micronucleus test) and respiratory burst measurements. In a broad view, results point to an important seasonal variation of the biochemical biomarkers analyzed. However, data obtained clearly indicate that croakers collected in winter at the polluted site were subjected to a level of clastogenic agents sufficient to generate irreversible genetic damages (mutations) and impair the fish immune system.


Assuntos
Biomarcadores/análise , Dano ao DNA/fisiologia , Exposição Ambiental , Perciformes/fisiologia , Poluição da Água/efeitos adversos , Animais , Células Sanguíneas/efeitos dos fármacos , Brasil , Catalase/efeitos dos fármacos , Catalase/metabolismo , Dano ao DNA/efeitos dos fármacos , Monitoramento Ambiental , Doenças dos Peixes/induzido quimicamente , Glutationa Transferase/efeitos dos fármacos , Glutationa Transferase/metabolismo , Doenças do Sistema Imunitário/induzido quimicamente , Doenças do Sistema Imunitário/veterinária , Peroxidação de Lipídeos/efeitos dos fármacos , Metalotioneína/análise , Perciformes/genética , Perciformes/imunologia , Explosão Respiratória/efeitos dos fármacos , Estações do Ano , Água do Mar/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...